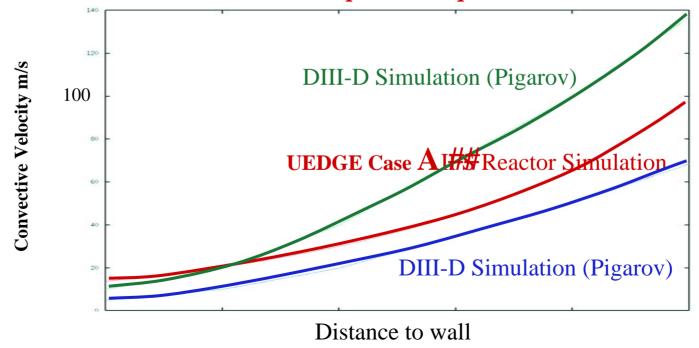
EFFECTS of CONVECTIVE BLOB TRANSPORT on REACTORS

Reference: "Hollywood"

- Subject of submitted FED paper: summary here
- M. Kotschenreuther (IFS) in collaboration with Tom Rognlien (LLNL), Prashant Valanju (IFS)
- New: possible ITER implications discussed here

Our Physics Understanding of SOL Transport has Changed


- Pioneering experiments at C-Mod, DIII-D, NSTX:
 large radial convective transport of plasma blobs
- Theoretical investigations: blobs of plasma should rapidly convect to the main chamber wall
- IFS-LLNL collaboration: investigation of potential REACTOR effects of convection for the first time

Serious Effects of Blob Convective Transport

- First Wall Erosion
 - A concern mentioned in the literature, but heretofore not estimated for *reactors*
 - Serious implications found here
- Helium Pumping
 - Not discussed in literature, but: far SOL
 transport disproportionately effects helium
 removal (negatively?)--work in progress

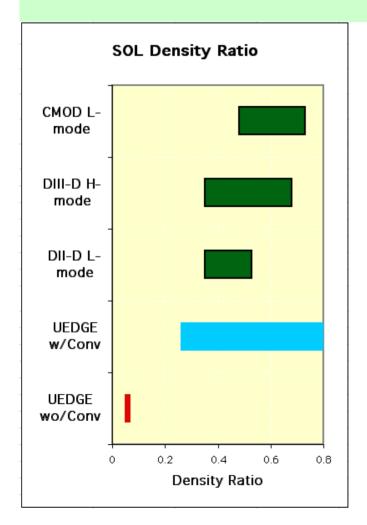
2-D Simulations using UEDGE

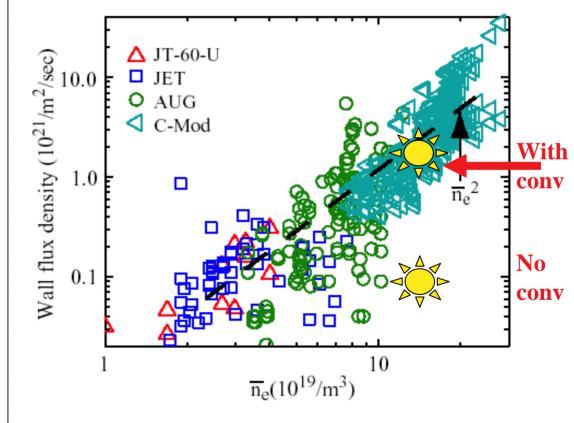
- Previous state of the art: use **constant** empirical *diffusion* coefficient for reactor simulation
- But large convection appears essential in far SOL
- To estimate reactor effects: use empirically motivated convection model
 - similar to that used to simulate present experiments

Several Convection Profiles Tried for Reactor to Obtain Best SOL Profile Fit

- Desire: simulated reactor SOL density profile to match SOL profile characteristics found in present experiments
- Quantitative profile characteristics checked with experiments:
 - 1. Ratio of density in the SOL (d/a=0.04) to separatrix density
 - 2. a/Density scale length at d/a = 0.04
 - 3. Convective flux at d/a = 0.04

a = minor radius

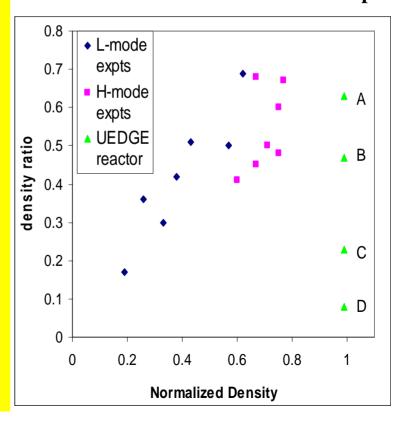

 $d/a = 0.04 \sim \text{first wall ARIES}$


Four convection profiles tried:

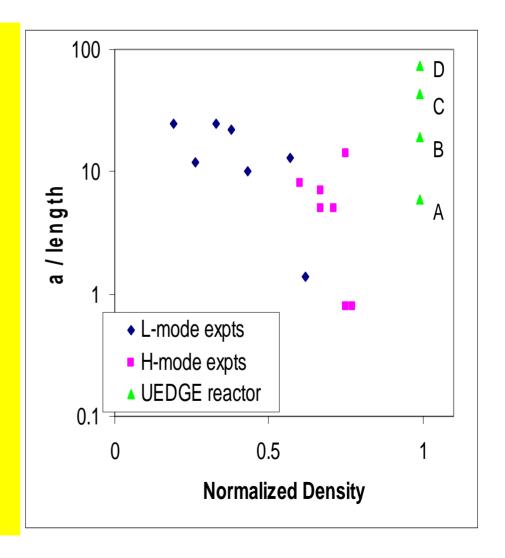
- A) 10 m/s to 100 m/s (found to give BEST FIT to data)
- B) 10 m/s to 50 m/s (reduce convection near wall)
- C) 5 m/s to 100 m/s (reduce convection near plasma)
- D) 0 m/s to 0 m/s (no convection)
- Find: Case A gives best profile match: reducing the convection (B and C) results in a poorer match to characteristics 1,2 and 3
- Case A is also best fit of convection used to model present expts.

Why Wall Erosion Estimates Based on Models w/o Convection are Likely to be Low

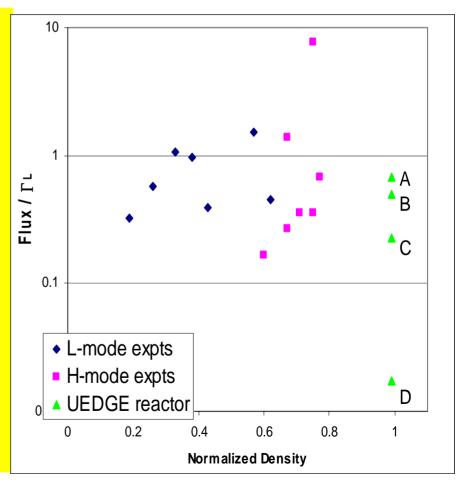
- Standard SOL transport model: constant diffusion *only*
- Probably underestimates plasma-chamber interaction by ~ 30



Density Ratio Comparison


- Find: a strong relationship between the density ratio in SOL and the Greenwald ratio
- For high Greenwald ratio (like reactors), density in the far SOL is high => STRONG WALL INTERACTION
- Case A is most consistent with experiments
- Case D without convection does not match experiments

Density Ratio = $n_{d/a=0.04}/n_{sep}$


SOL Density Scale Length Comparison

- Find: SOL density decay is slow in experiments, and tends to be flatter at higher density
- Case A most consistent
- Case D without convection: density profile does not match experiments

Wall Flux Comparison

- Experimentally estimated plasma flux to the wall has a large scatter
- Flux trends are described by the expression of Labombard: $\Gamma_L = 10^{21} (n_e/10^{20})^2$
- Case A most similar to data
- Case D without convection: under-estimates flux by nearly two orders of magnitude

Kinetic Neutral Code NUT evaluates the hot CX neutral flux to the wall

- Wall erosion (for W) is dominated by hot CX neutral flux
- The fluid treatment in UEDGE cannot evaluate this
- Thus: the kinetic neutral code NUT is used
 - NUT: benchmarked against experimental data on TEXT & C-MOD
- The plasma profiles and neutral source found by UEDGE are input into NUT
- NUT computed the energy distribution of CX neutrals back the wall
- The sputtering coefficient is integrated over the CX neutral distribution from NUT to obtain the wall sputtering

With Realistic Convection: Strong First Wall Erosion for W

- Most sputtering-resistant material: Tungsten
- Without convection: **0.17 mm/yr**
- With convection: **0.61 mm/yr**
 - Initial rough estimate: small prompt redeposition (ionization outside sheath, sputtered gyro radius)

Consequences of Tungsten Erosion

- Large dust generation
 - ITER: ~10% of sputtered material forms micron dust
 - With convection: ~ 340 kg/yr dust after 2 years
 - LOVA dosage marginally <u>exceeds no evacuation limit</u> (even with 99% filter, -adapting analysis of Merril et. al.)
- High Z Plasma Impurities preclude ignition
 - C-Mod has high-Z wall: H-mode screening factors 1-10%
 - ASDEX ~ 1% UEDGE ~ 10%
 - This range of screening can have unacceptable consequences:
 - H-mode ignition precluded due to radiative losses for
 0.5 1.0 % screening factor

Results for Liquids

- Flibe, LiSn, Sn considered
 - Obviously dust, structural erosion are not issues
- For low Z PFCs (Flibe, LiSn):
 - Plasma: much more tolerant of Low Z impurity
 - Acceptable screening factor ~ 5 %
 - Recall experimental values are ~ 1 10 %
 - Sn walls
 - High Z: acceptable concentration slightly higher than W, but sputtering also slightly higher
 - Required screening factor ~ same as W: very worrisome

Implications

- Better physics understanding of SOL transport required: could be show-stopper
 - Plasma-wall interaction: structural erosion, dust
 - Impurity transport and core plasma contamination
- Alternative design concepts required
 - Low-Z liquid walls
 - Low Z liquids => acceptable plasma impurity level
 - Continually replenish wall => no structural erosion
 - Even a thin wetted surface may suffice
 - Field line extraction divertor
 - Low density SOL operation to minimize SOL convection

Beyond FED paper

- Erosion near edges of protrusions and cavities
 - Near corners, projections: *blobs will dump plasma much more strongly*
 - Recycled neutral source many times higher => Local erosion rates several times higher than for flat wall
 - Wall next to ICRF antennas, and antenna itself
 - Wall near blanket test modules which are inset by ~cms
 - Several mm/year W erosion could be structurally unacceptable in reactor
- Assuming ITER edge is the same as ARIES RS calculation
 - 10,000 shots, $400 \sec \Rightarrow 3 \text{ mm Be erosion for } flat wall$
 - Several times higher (?) near protrusions and cavities
 - ITER Be PFC is 10 mm thick
- Possible reactor relevant design solutions (?)
 - Low-Z liquid wetted wall near edges?
 - Extraction divertor to run in SOL regime with low blob transport?

Another ITER Issue: Main Chamber Erosion from ELMS

- Experiments: ELMs cause a "super blob" in the SOL (?)
 - Particles expelled in ELMS go to first wall, not divertor
 - This is recognized as a possible problem for ITER
- Estimate time averaged flux:
 - − ~ 3% particles lost per ELM (similar to energy)
 - ~ 1 ELM / second
 - Implied average flux $\sim 10^{18}/\text{m}^2\text{sec}$
- Estimated flux from steady state blobs $\sim 10^{21}/\text{m}^2\text{sec}$
- Thus: continuous small blobs (considered above) can give much higher average erosion
- The seriousness of the continuous blob erosion problem appears to be under-appreciated

Future Direction: 2 ½ D Simulations of Blobs Coupled to Neutral Calculation

- 3 D simulations are desirable but very expensive (BOUT)
- Blobs can be described fairly well with 2 D equations
 - Average along field lines: Krasheninnikov, D'Ippolito, etc.
 - Different "2D" description than implemented in UEDGE
 - D'Ippolito found agreement with NSTX blobs with 2D model
- Thus: couple 2-D turbulence code (much faster) to NUT
 - With NUT, neutral source terms determine SOL profiles
 - SOL profiles probably help determine turbulence/blob strength
 - Hot CX neutrals determine sputtering
- Model parallel conduction/convection from mid-plane to divertor region semi –analytically: the "1/2 D"
- $2\frac{1}{2}$ D simulations MUCH less expense than 3 D => can directly simulate to steady state of the average fluxes

Future Direction: 2 ½ D Simulations of Blobs Coupled to Neutral Calculation (Continued)

- This provides a self consistent physics based model without empirical fitting parameters
- It is fast enough to be used to regularly
 - E.g to benchmark with experiments
 - To perform parameter scans and trends, give insight
 - Applied to ITER and reactors to estimate erosion
- Could also be used to examine dynamics of a large initialized blob
 - simulating one produced by an ELM (?)-present ITER issue
- May be fast enough to be coupled to an edge sheath model to compute impurity redeposition (? next slide)
- Different approach than UEDGE/BOUT- comparisons obviously would be very important

Re-deposition of Sputtered Impurities Can be Strongly Modified by Blobs

- Blobs in the far SOL imply
 - Plasma density near/at wall has large variations
 - Regions of high density : convecting rapidly toward the wall
 - Regions of low density: convecting rapidly toward the main plasma
- The spatial scale of the density variations >> distance for a sputtered atom to be ionized
- Thus, consider the fate of impurity sputtered by a hot CX D neutral
 - Sputtered wall atoms in regions of low plasma density ionize in the low density plasma
 - The plasma impurity is now rapidly convected back to the plasma
 - Also, sheath in regions of low density plasma: less prompt redeposition
- Thus: impurity re-deposition could be much smaller than in present models
- Bulk plasma contamination could be higher (recall W may preclude ignition)
- We would like to couple 2 ½ D simulations above with a rough sheath model (as time and funds permit)

ICC Grant Awarded to Design Field Line Extraction Divertor

- Field line extraction divertor: extract separatrix field lines outside the TF coils with novel magnet designs (VERY different coils from bundle divertor)
- Previous work (APEX, 2002 APS invited talk) demonstrates this is possible with very low field ripple at the plasma (<<1%)
- Have Received ICC grant to use magnet design tools developed for NCSX Compact Stellarator
 - Highly sophisticated algorithms optimize coils for 3-D magnetic fields
 - Code produces much simpler, more practical magnet designs for 3 –d problems
 - Optimizations can include arbitrary engineering and physics properties
 (plasma ripple, coil stress, clearance, complexity, heating, etc.)
- Thus, a radically different divertor solution may be practical
 - Interest from CDX-U, Pegasus and NSTX to develop retro-fit coils
 - Large flux expansion outside TF coils could enable low recycling divertor (without Li)- high edge T, low edge n
 - Regimes of low blob transport, high core confinement
 - Edge conditions more compatible with AT transport barrier modes (DIII-D)

Conclusions

- Estimated main chamber erosion is strongly increased by convection
 - Plasma impurities for W wall may preclude ignition
 - Structural erosion near corners/edges could be unacceptable
 - Large dust generation may be problematic (regulatory/social acceptance)
 - Issue for future: present models for impurity contaminations and helium
 exhaust may need to be substantially modified (more pessimistic ??)
- Need better models of SOL turbulence & simulations
 - More physics based models of SOL blobs & SOL impurities
- Unconventional alternatives may be required fusion's feasibility
 - Low Z liquid walls (even just a thin wetted surface for erosion?)
 - Field line extraction divertor to enable reactor operation in regimes
 with high SOL T, low SOL n